3.570 \(\int \frac{(d+e x) (1+2 x+x^2)^5}{x^4} \, dx\)

Optimal. Leaf size=138 \[ \frac{1}{7} x^7 (d+10 e)+\frac{5}{6} x^6 (2 d+9 e)+3 x^5 (3 d+8 e)+\frac{15}{2} x^4 (4 d+7 e)+14 x^3 (5 d+6 e)+21 x^2 (6 d+5 e)-\frac{10 d+e}{2 x^2}+30 x (7 d+4 e)-\frac{5 (9 d+2 e)}{x}+15 (8 d+3 e) \log (x)-\frac{d}{3 x^3}+\frac{e x^8}{8} \]

[Out]

-d/(3*x^3) - (10*d + e)/(2*x^2) - (5*(9*d + 2*e))/x + 30*(7*d + 4*e)*x + 21*(6*d + 5*e)*x^2 + 14*(5*d + 6*e)*x
^3 + (15*(4*d + 7*e)*x^4)/2 + 3*(3*d + 8*e)*x^5 + (5*(2*d + 9*e)*x^6)/6 + ((d + 10*e)*x^7)/7 + (e*x^8)/8 + 15*
(8*d + 3*e)*Log[x]

________________________________________________________________________________________

Rubi [A]  time = 0.0710799, antiderivative size = 138, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.105, Rules used = {27, 76} \[ \frac{1}{7} x^7 (d+10 e)+\frac{5}{6} x^6 (2 d+9 e)+3 x^5 (3 d+8 e)+\frac{15}{2} x^4 (4 d+7 e)+14 x^3 (5 d+6 e)+21 x^2 (6 d+5 e)-\frac{10 d+e}{2 x^2}+30 x (7 d+4 e)-\frac{5 (9 d+2 e)}{x}+15 (8 d+3 e) \log (x)-\frac{d}{3 x^3}+\frac{e x^8}{8} \]

Antiderivative was successfully verified.

[In]

Int[((d + e*x)*(1 + 2*x + x^2)^5)/x^4,x]

[Out]

-d/(3*x^3) - (10*d + e)/(2*x^2) - (5*(9*d + 2*e))/x + 30*(7*d + 4*e)*x + 21*(6*d + 5*e)*x^2 + 14*(5*d + 6*e)*x
^3 + (15*(4*d + 7*e)*x^4)/2 + 3*(3*d + 8*e)*x^5 + (5*(2*d + 9*e)*x^6)/6 + ((d + 10*e)*x^7)/7 + (e*x^8)/8 + 15*
(8*d + 3*e)*Log[x]

Rule 27

Int[(u_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[u*Cancel[(b/2 + c*x)^(2*p)/c^p], x] /; Fr
eeQ[{a, b, c}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 76

Int[((d_.)*(x_))^(n_.)*((a_) + (b_.)*(x_))*((e_) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*
x)*(d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, d, e, f, n}, x] && IGtQ[p, 0] && (NeQ[n, -1] || EqQ[p, 1]) && N
eQ[b*e + a*f, 0] && ( !IntegerQ[n] || LtQ[9*p + 5*n, 0] || GeQ[n + p + 1, 0] || (GeQ[n + p + 2, 0] && Rational
Q[a, b, d, e, f])) && (NeQ[n + p + 3, 0] || EqQ[p, 1])

Rubi steps

\begin{align*} \int \frac{(d+e x) \left (1+2 x+x^2\right )^5}{x^4} \, dx &=\int \frac{(1+x)^{10} (d+e x)}{x^4} \, dx\\ &=\int \left (30 (7 d+4 e)+\frac{d}{x^4}+\frac{10 d+e}{x^3}+\frac{5 (9 d+2 e)}{x^2}+\frac{15 (8 d+3 e)}{x}+42 (6 d+5 e) x+42 (5 d+6 e) x^2+30 (4 d+7 e) x^3+15 (3 d+8 e) x^4+5 (2 d+9 e) x^5+(d+10 e) x^6+e x^7\right ) \, dx\\ &=-\frac{d}{3 x^3}-\frac{10 d+e}{2 x^2}-\frac{5 (9 d+2 e)}{x}+30 (7 d+4 e) x+21 (6 d+5 e) x^2+14 (5 d+6 e) x^3+\frac{15}{2} (4 d+7 e) x^4+3 (3 d+8 e) x^5+\frac{5}{6} (2 d+9 e) x^6+\frac{1}{7} (d+10 e) x^7+\frac{e x^8}{8}+15 (8 d+3 e) \log (x)\\ \end{align*}

Mathematica [A]  time = 0.0384766, size = 140, normalized size = 1.01 \[ \frac{1}{7} x^7 (d+10 e)+\frac{5}{6} x^6 (2 d+9 e)+3 x^5 (3 d+8 e)+\frac{15}{2} x^4 (4 d+7 e)+14 x^3 (5 d+6 e)+21 x^2 (6 d+5 e)+\frac{-10 d-e}{2 x^2}+30 x (7 d+4 e)-\frac{5 (9 d+2 e)}{x}+15 (8 d+3 e) \log (x)-\frac{d}{3 x^3}+\frac{e x^8}{8} \]

Antiderivative was successfully verified.

[In]

Integrate[((d + e*x)*(1 + 2*x + x^2)^5)/x^4,x]

[Out]

-d/(3*x^3) + (-10*d - e)/(2*x^2) - (5*(9*d + 2*e))/x + 30*(7*d + 4*e)*x + 21*(6*d + 5*e)*x^2 + 14*(5*d + 6*e)*
x^3 + (15*(4*d + 7*e)*x^4)/2 + 3*(3*d + 8*e)*x^5 + (5*(2*d + 9*e)*x^6)/6 + ((d + 10*e)*x^7)/7 + (e*x^8)/8 + 15
*(8*d + 3*e)*Log[x]

________________________________________________________________________________________

Maple [A]  time = 0.007, size = 128, normalized size = 0.9 \begin{align*}{\frac{e{x}^{8}}{8}}+{\frac{d{x}^{7}}{7}}+{\frac{10\,e{x}^{7}}{7}}+{\frac{5\,d{x}^{6}}{3}}+{\frac{15\,e{x}^{6}}{2}}+9\,d{x}^{5}+24\,e{x}^{5}+30\,d{x}^{4}+{\frac{105\,e{x}^{4}}{2}}+70\,d{x}^{3}+84\,e{x}^{3}+126\,d{x}^{2}+105\,e{x}^{2}+210\,dx+120\,ex+120\,d\ln \left ( x \right ) +45\,e\ln \left ( x \right ) -{\frac{d}{3\,{x}^{3}}}-5\,{\frac{d}{{x}^{2}}}-{\frac{e}{2\,{x}^{2}}}-45\,{\frac{d}{x}}-10\,{\frac{e}{x}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)*(x^2+2*x+1)^5/x^4,x)

[Out]

1/8*e*x^8+1/7*d*x^7+10/7*e*x^7+5/3*d*x^6+15/2*e*x^6+9*d*x^5+24*e*x^5+30*d*x^4+105/2*e*x^4+70*d*x^3+84*e*x^3+12
6*d*x^2+105*e*x^2+210*d*x+120*e*x+120*d*ln(x)+45*e*ln(x)-1/3*d/x^3-5*d/x^2-1/2*e/x^2-45*d/x-10*e/x

________________________________________________________________________________________

Maxima [A]  time = 1.00056, size = 171, normalized size = 1.24 \begin{align*} \frac{1}{8} \, e x^{8} + \frac{1}{7} \,{\left (d + 10 \, e\right )} x^{7} + \frac{5}{6} \,{\left (2 \, d + 9 \, e\right )} x^{6} + 3 \,{\left (3 \, d + 8 \, e\right )} x^{5} + \frac{15}{2} \,{\left (4 \, d + 7 \, e\right )} x^{4} + 14 \,{\left (5 \, d + 6 \, e\right )} x^{3} + 21 \,{\left (6 \, d + 5 \, e\right )} x^{2} + 30 \,{\left (7 \, d + 4 \, e\right )} x + 15 \,{\left (8 \, d + 3 \, e\right )} \log \left (x\right ) - \frac{30 \,{\left (9 \, d + 2 \, e\right )} x^{2} + 3 \,{\left (10 \, d + e\right )} x + 2 \, d}{6 \, x^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)*(x^2+2*x+1)^5/x^4,x, algorithm="maxima")

[Out]

1/8*e*x^8 + 1/7*(d + 10*e)*x^7 + 5/6*(2*d + 9*e)*x^6 + 3*(3*d + 8*e)*x^5 + 15/2*(4*d + 7*e)*x^4 + 14*(5*d + 6*
e)*x^3 + 21*(6*d + 5*e)*x^2 + 30*(7*d + 4*e)*x + 15*(8*d + 3*e)*log(x) - 1/6*(30*(9*d + 2*e)*x^2 + 3*(10*d + e
)*x + 2*d)/x^3

________________________________________________________________________________________

Fricas [A]  time = 1.3835, size = 347, normalized size = 2.51 \begin{align*} \frac{21 \, e x^{11} + 24 \,{\left (d + 10 \, e\right )} x^{10} + 140 \,{\left (2 \, d + 9 \, e\right )} x^{9} + 504 \,{\left (3 \, d + 8 \, e\right )} x^{8} + 1260 \,{\left (4 \, d + 7 \, e\right )} x^{7} + 2352 \,{\left (5 \, d + 6 \, e\right )} x^{6} + 3528 \,{\left (6 \, d + 5 \, e\right )} x^{5} + 5040 \,{\left (7 \, d + 4 \, e\right )} x^{4} + 2520 \,{\left (8 \, d + 3 \, e\right )} x^{3} \log \left (x\right ) - 840 \,{\left (9 \, d + 2 \, e\right )} x^{2} - 84 \,{\left (10 \, d + e\right )} x - 56 \, d}{168 \, x^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)*(x^2+2*x+1)^5/x^4,x, algorithm="fricas")

[Out]

1/168*(21*e*x^11 + 24*(d + 10*e)*x^10 + 140*(2*d + 9*e)*x^9 + 504*(3*d + 8*e)*x^8 + 1260*(4*d + 7*e)*x^7 + 235
2*(5*d + 6*e)*x^6 + 3528*(6*d + 5*e)*x^5 + 5040*(7*d + 4*e)*x^4 + 2520*(8*d + 3*e)*x^3*log(x) - 840*(9*d + 2*e
)*x^2 - 84*(10*d + e)*x - 56*d)/x^3

________________________________________________________________________________________

Sympy [A]  time = 1.52523, size = 121, normalized size = 0.88 \begin{align*} \frac{e x^{8}}{8} + x^{7} \left (\frac{d}{7} + \frac{10 e}{7}\right ) + x^{6} \left (\frac{5 d}{3} + \frac{15 e}{2}\right ) + x^{5} \left (9 d + 24 e\right ) + x^{4} \left (30 d + \frac{105 e}{2}\right ) + x^{3} \left (70 d + 84 e\right ) + x^{2} \left (126 d + 105 e\right ) + x \left (210 d + 120 e\right ) + 15 \left (8 d + 3 e\right ) \log{\left (x \right )} - \frac{2 d + x^{2} \left (270 d + 60 e\right ) + x \left (30 d + 3 e\right )}{6 x^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)*(x**2+2*x+1)**5/x**4,x)

[Out]

e*x**8/8 + x**7*(d/7 + 10*e/7) + x**6*(5*d/3 + 15*e/2) + x**5*(9*d + 24*e) + x**4*(30*d + 105*e/2) + x**3*(70*
d + 84*e) + x**2*(126*d + 105*e) + x*(210*d + 120*e) + 15*(8*d + 3*e)*log(x) - (2*d + x**2*(270*d + 60*e) + x*
(30*d + 3*e))/(6*x**3)

________________________________________________________________________________________

Giac [A]  time = 1.18666, size = 188, normalized size = 1.36 \begin{align*} \frac{1}{8} \, x^{8} e + \frac{1}{7} \, d x^{7} + \frac{10}{7} \, x^{7} e + \frac{5}{3} \, d x^{6} + \frac{15}{2} \, x^{6} e + 9 \, d x^{5} + 24 \, x^{5} e + 30 \, d x^{4} + \frac{105}{2} \, x^{4} e + 70 \, d x^{3} + 84 \, x^{3} e + 126 \, d x^{2} + 105 \, x^{2} e + 210 \, d x + 120 \, x e + 15 \,{\left (8 \, d + 3 \, e\right )} \log \left ({\left | x \right |}\right ) - \frac{30 \,{\left (9 \, d + 2 \, e\right )} x^{2} + 3 \,{\left (10 \, d + e\right )} x + 2 \, d}{6 \, x^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)*(x^2+2*x+1)^5/x^4,x, algorithm="giac")

[Out]

1/8*x^8*e + 1/7*d*x^7 + 10/7*x^7*e + 5/3*d*x^6 + 15/2*x^6*e + 9*d*x^5 + 24*x^5*e + 30*d*x^4 + 105/2*x^4*e + 70
*d*x^3 + 84*x^3*e + 126*d*x^2 + 105*x^2*e + 210*d*x + 120*x*e + 15*(8*d + 3*e)*log(abs(x)) - 1/6*(30*(9*d + 2*
e)*x^2 + 3*(10*d + e)*x + 2*d)/x^3